高周波高速伝送路設計の基礎 ~ギガビット伝送の基礎から差動クロストーク解析まで~

Basic Lecture of Transmission Line Design for High Speed, High Frequency Applications

$\sim\,$ Gigabit Transmission : from Basic Theory, to Differential Cross-talk Analysis $\sim\,$

碓井有三 (シグナルインテグリティ コンサルタント)

Yuzo USUI, Consultant, Signal Integrity

概要

転送速度が1ギガビット/秒を超える付近から信号の減衰が顕在化して伝送品質が低下してくる.こ れらの損失が伝送品質に及ぼす影響を定量的に説明し、アイパターンやジッタについて述べ、広いア イ開口を得る方法について解説する.さらに、考え方が煩雑な、差動伝送におけるクロストークの理 論的な解析を行い、線路長、周辺の回路定数などの影響について詳述する.

図 クロストーク係数と表面層の遠端クロストーク

表 差動クロストークのまとめ						
	近端		遠端			
層	表面層	中間層	表面層	中間層		
ξ ₂₃	ξ ₂₃ に比例		複雑	小さい ⁵ 23 に比例		
線長	無関係		線長に比例	無関係		
容量	無関係		無関係	容量に比例		

Abstract

When the transfer data rate exceeds 1 Gbit / s, the signal quality is degraded by increasing of transmission line loss. These losses are explained as the effect on signal quality. And the techniques to get wider eye patterns, are presented. In addition, a theoretical analysis of the differential cross-talk is presented as functions of line length, circuit constant and PCB layer structure.

1. はじめに

毎秒数百メガビット(数百 Mbps)までの信号伝送 や,毎秒ギガビット(Gbps)の伝送でも数センチメー トルの短い配線では,線路損失を考える必要はなか ったが,Gbpsを超える,数十センチメートル以上の 比較的長い配線では線路の損失が顕在化してくる.

実際に伝送されるデータパターンは、ランダムデ ータであるから、広い周波数範囲の成分を有する. これらの波形の評価には、伝送する無数の異なるデ ューティ比の信号に対する損失線路の時間応答をタ イミング的に重ねて示すことが一般的である.

このパターンは、目玉(eye)のような形をしている ことから、アイパターン(eye pattern)と呼ばれる.ア イパターンの、時間と振幅に対する開口部(アイ開 口)は、損失の増加に伴い狭くなるが、これを広げる 複数の技術が実用化されている.

ギガビット伝送には、差動伝送が用いられ、伝送 するデータは、"0"と"1"のデジタル量であるが、その 振る舞いは、アナログ的であり、わずかなクロスト ークも、ジッタの増加を招いて、その結果として、 アイ開口を狭める.

本稿では,前半は,線路損失とアイパターンを中 心に述べ,後半は,差動伝送のクロストーク解析方 法を紹介し,線路長や周辺の回路定数などの影響に ついて詳しく述べる.

2. 線路の損失

図1に有損失分布定数回路の等価回路を示す.インダクタンスLに直列に主に表皮効果に起因する 抵抗Rが,キャパシタンスCに並列に誘電正接

図1 有損失分布定数回路の等価回路

 $(\tan \delta)$ に起因する漏れコンダクタンスGがそれぞ れ存在する.

図1の有損失線路を解くと,

を得る.ここに、のは角周波数である.式(1)は、

$$V = e^{\pm \sqrt{(j\omega L + R)(j\omega C + G)x}}$$
 (2)

の解を持つ.この指数の肩を

$$\alpha + j\beta = \sqrt{(j\omega L + R)(j\omega C + G)}$$
....(3)

とおき、 $R \ll \omega L$, $G \ll \omega C$ の条件下で近似する. 特性インピーダンス Z_0 は、 $Z_0 \cong \sqrt{L/C}$ であるから、式(3)は、

$$\sqrt{(j\omega L+R)(j\omega C+G)} \cong \frac{1}{2} \left(GZ_0 + \frac{R}{Z_0} \right) + j\omega\sqrt{LC} \dots (4)$$

と近似できる.

式(4)の右辺第1項が単位長当たりの減衰,第2 項の *√LC* が単位長当たりの遅延である.

減衰は一般的にデシベル(dB)で表すから,単位長 あたりの減衰量は,

$$20\log(e^{\alpha}) = 4.34 \left(GZ_0 + \frac{R}{Z_0}\right) \left[dB/m\right] \dots (5)$$

となる.式(5)において,GZ₀は誘電損に,R/Z₀は 抵抗損にそれぞれ相当する.

2.1. 誘電損

ボードを構成する誘電体の誘電率は、厳密には実数ではなくてわずかな虚数部を含む. このため、分布定数回路を等価回路で表すと、 図 1 に示すように、キャパシタに漏れコンダクタンスが並列に接続された形になる. この漏れコンダクタンスG と ωC との比を tan δ (誘電正接)という. すなわち、

である. 一般に使用されているボード材料のFR-4 では、 $\tan \delta = 0.02$ 程度であるが、低損失用に 0.005 程度のものも実用化されている.

式(5)および式(6)により,誘電損は, $\tan \delta$ と周波数fとに比例する.

2.2 抵抗損

信号の周波数 が高くなると、電 流は導体の表面の みを流れる.導体 表面の電流密度を I_0 とすると、表面 からxの深さの電 流密度は、

 $I_x = I_0 e^{-\frac{x}{d}}$(7) と表される. *d* は表皮の深さで、

$$d = \sqrt{\frac{2}{\omega \sigma \mu}} \dots (8)$$

である.ここに、 ω は角周波数、 σ は導体の導電率、 μ は透磁率である.

 I_x を,図 2 のように, xについて, パターン中心まで積分すると, 全電流が求まる. すなわち,

$$I = 2I_0 \int_0^{t/2} (W + t - 4x) e^{-\frac{x}{d}} dx$$

= $2d \times (W + t) \left(1 - e^{-\frac{t}{2d}} \right) \times I_0$ (9)

となる. 直流電流 I_{DC} は

$$I_{DC} = I_0 \times Wt \tag{10}$$

であるから、抵抗Rと直流抵抗 R_{DC} の比は、

であり、十分に高い周波数では $t \gg d$ とみなせるので、式(11)から、

となって抵抗は、周波数の平方根に比例する.

なお,実際には,表皮抵抗は,専用のツールで解 析して求める.

式(5)の右辺括弧内第2項が抵抗損で,抵抗に比例 するので,抵抗損も周波数の平方根に比例する.

図3に、誘電損と抵抗損を、パターン幅Wおよび

図 3 ボードの損失(中間層)

 $tan \delta$ に対して解析した結果を示す.

ー般によく使われる 100 μ m 幅, 40 μ m 厚のパ ターンで、tan δ = 0.02 の場合は、2GHz 付近で抵抗 損と誘電損とがクロスする. 抵抗損は周波数の平 方根に比例するが誘電損は周波数に比例するため、 このクロスポイント以上では損失が急速に増大して くる.

3. パルス波形と帯域

ここでパルス波形の帯域について考える.

図4 パルス波形の周波数スペクトル

周期関数の波形をフーリエ変換すると、周波数 特性の形はパルス幅 T_w と立ち上がり時間 t_r とのみ によって決まり、繰り返し周期Tには依存しない.

図 4 にパルス幅 T_w と立ち上がり時間 t_r とを有す る信号の周波数スペクトルを示す.このスペクトル の形は、同図中に示すように、パルス幅 T_w に依存す るスペクトルと立ち上がり時間 t_r に依存するスペク トルとの積によって計算される.図は $t_r = T_w/2$ の場 合を示す.同図のスペクトルにアナログの信号帯域 の考えを導入し、スペクトルが-3dB(0.7 倍)になる 点を求めると $f \approx 0.4/T_w$ となる.例えば 3.125Gbps の 転送速度では、 $T_w = 320$ ps であるから 0.4/ $T_w = 1.25$ GHzである.すなわち、損失を考慮する 場合には、3.125Gbpsの信号は 1.25GHz の帯域を持 っていると考える.この周波数帯では、まだ抵抗損 が支配的である.図 3 に、転送速度(Gbps)も併記し た.

図 3 で述べた,抵抗損と誘電損とがクロスする 2GHzを周波数帯域とする転送速度は,帯域を0.4で 割ると,5Gbpsとなる.このあたりが周波数の平方根 に比例する抵抗損に代わって周波数に比例する誘電 損が優勢となる点である.

4. アイパターンの評価

先に述べた信号のデューティ比が変わることに よって観測できるアイパターンの評価には,異なる 複数のデューティ比の信号による応答を繰り返し求 めて,それらを重ねて表示する必要がある.この目 的で用いられるのが, PRBS(Pseudo Random Binary Sequence:疑似乱数ビット列)である.PRBS は, 2ⁿ-1で表される繰り返し周期内で完全に平坦な周

図5損失線路の時間応答

波数スペクトルを有する.ただし、この周波数スペ クトルの最低周波数は、繰り返し周期によって定ま る.

図 5 は PRBS のパターン(一部分)に対して, 線長 が 25cm と 100cm とについて遠端の波形を求めたも のである.同じ論理が連続すると振幅がフルスケー ルに漸近して大きくなり, その次に反対の論理に変 わる際に応答が追いつかない.この傾向は線長が長 いほど顕著である.

この時間応答を UI (ユニット・インターバル:シ リアル信号の1つのビットの長さ)ごとに重ねて示 したものがアイパターンである.上下の論理で囲ま れた領域(目玉のような部分)が広いほど論理が確定 しやすい.

図6は図5の時間応答のアイパターンの例を示す. 線長が長くなるとアイパターンが狭くなり,25cmで はアイが十分に開いているが,100cm ではほとんど 開いていない.

図6アイパターン

5. 対策技術

広いアイを確保するための実用化されている対 策技術の原理を以下に示す.

5.1. エンコード(encode)

完全なランダムデータには同一論理が連続する 孤立波も含む.評価に用いる PRBS の場合は, PRBS が有限の繰り返し周期を持っているため,わ ずかながらアイが開いている場合でも,孤立波では 全くアイが開かないことがある.

デューティ比が大きくならないように, すなわち, 同一論理の連続を避けるためにエンコードを行う. 代表的なものは, 8B/10B変換であり 8 ビット データを 10 ビットキャラクタに変換する. 8B/10B によるエンコードは, 同一論理は最大でも 4 ビット しか連続しない.

変換により、変換前に対して、25%のオーバーへ ッドが生じ、2.5Gbps は 3.125Gbps となるが、孤立波 を含んでも、デューティ比は最大 5 に抑えられる. したがって、8B/10B 適用前の2.5Gbps とほぼ同程度 のアイ開口が得られる.このエンコードによって、 キャパシタによる AC カップル伝送が可能となる. また、同時にクロック埋め込みや誤り検出の役目を 果たすことも出来る.

5.2. $\Im J I I J J r i A$ (pre-emphasis)

同符号が連続した後に,異なる符号レベルに遷移する際の振幅を強調して受信レベルの平準化を図るものである.変化時の振幅を大きくして強調する

手法と、逆に、同一論理が連続するときに、変化時 と比べて振幅を小さくする手法とがある.図7に後 者のプリエンファシスを適用した場合の時間応答と アイパターンを適用前と比較して示す.

5.3. イコライザ(equalizer)

線路の伝送特性による高域の減衰をレシーバ側

で補正して,総合的な 周波数特性を平坦にす るものである.図8は, 図7(a)に対して,アナ ログ的帯域の1.25GHz で6dB強調したときの アイパターンを示す. 図7(a)の適用前と比較 するとその効果が分か る.

図8 イコライザ適用後

6. 差動クロストーク

6.1. 差動信号クロストークの特徴

差動信号というよりも、ギガビット伝送の特徴 であるが、一般に、遠端を整合終端する.また、伝 送するパルス幅は、線路の往復時間に比べて狭いこ とが多い.その前提で、一般信号との違いを、表 1 に比較して示す.

表1 差動信号クロストークの特徴

	一般信号のクロストーク	差動信号のクロストーク	
クロストークのパルス幅 7:線路の遅延		T_W : 加害者の信号のパルス幅 $T_W \ge 2 \tau$ の場合は一般信号と同じ	
収束性	ドライバの駆動能力に依存	単発 ただし 2 7 後に逆相ノイズ	
極性	多くはノイズ源と同じ	電圧源ドライバ : 正相 電流源ドライバ : 逆相	
クロストークの影響	ノイズマージン Δtpd	ジッタ (小さくても影響がある)	
前提	遠端開放 ある程度広いパルス幅	遠端整合 狭いパルス幅	

6.2. 結合 2 本線路の方程式

差動クロストークは、1 対の加害者線路から、こ れと結合した別の1対の被害者線路への信号の結合 を解析して求める.計4本の結合線路の方程式は、 煩雑なので、まず、簡単のために、図9の2本の結合 線路の等価回路を解くと、

図9 2本の結合線路の等価回路

となり、行列を用いて表すと、

となるが、式(18)が煩雑になるため、

$$C_1 + C_M = C_{11}$$
(19)

$$C_2 + C_M = C_{22}$$
.....(21)

とおいて、*L*についてもサフィックスを書き換える. さらに、時間微分に対して、 $d/dt \rightarrow j\omega$ とおき、時 間関数と周波数関数を区別して、電圧、電流を大文 字に書き換えて、

となる. 式(22)

式(22)をxで微分して、式(23)を代入すると、

$$\frac{d^2}{dx^2} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} + \omega^2 \begin{pmatrix} L_{11} & L_m \\ L_m & L_{22} \end{pmatrix} \begin{pmatrix} C_{11} & C_m \\ C_m & C_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = 0 \dots (24)$$

を得る.

6.3. 二つの伝搬モード

式(24)の
$$V_1, V_2$$
は,
 $\varepsilon_1 = e^{\pm j\omega\sqrt{\lambda_1}x}$(25)

の二つの伝搬モードの1次結合, すなわち,

で表されると仮定する.ここに、 λ_1, λ_2 は、式(24)の、*LC*の行列の二つの固有値であり、

は(正規化した)固有ベクトルである. なお, 対称の2 本線路の場合には, この二組の伝搬モードは, コモ ン・モードとディファレンシャル・モードであるこ とはよく知られている.

電流についても同様に,

$$\frac{d^{2}}{dx^{2}} \begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix} + \omega^{2} \begin{pmatrix} C_{11} & C_{m} \\ C_{m} & C_{22} \end{pmatrix} \begin{pmatrix} L_{11} & L_{m} \\ L_{m} & L_{22} \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix} = 0 \dots (29)$$
$$\begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix} \dots (30)$$

と考える.式(28)のAおよび式(30)の係数の

は,

の関係がある.式(22),式(27)および式(30)から,

$$-\frac{d}{dx} \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} = j\omega \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} L_1 & L_m \\ L_m & L_2 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} (33)$$

を得る.式(33)の右辺の係数は、それぞれの伝搬モードのインダクタンス l_1, l_2 であるから、

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} L_1 & L_m \\ L_m & L_2 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} l_1 & 0 \\ 0 & l_2 \end{pmatrix} \dots (34)$$

の関係があり、同様に、キャパシタンス c_1, c_2 は、

$$\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}^{-1} \begin{pmatrix} C_1 & C_m \\ C_m & C_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} \dots (35)$$

で求まる. したがって, それぞれの伝搬モードの特 性インピーダンスは,

$$Z_1 = \sqrt{\frac{l_1}{c_1}}$$
(36)

$$Z_2 = \sqrt{\frac{l_2}{c_2}}$$
.....(37)

と求めることが出来る.

それぞれの伝搬モードの電圧と電流とは,積分 定数を用いて,

と表される.上4式の右辺第1項は、いずれも進行 方向に進む、いわゆる右行波を表し、第2項は逆向 きの左行波を表す.

6.4. 近端と遠端における境界条件

図 10 の近端と遠端の境界条件により、4 つの積 分定数 A₁₁から A₂₂ に関する連立方程式を立てる.

図 10 近端と遠端における境界条件

線路1および線路2の近端では,

$$\sum_{n=1}^{2} \left\{ \left(a_{1n} + b_{1n} \frac{R_{11}}{Z_n} \right) A_{n1} + \left(a_{1n} - b_{1n} \frac{R_{11}}{Z_n} \right) A_{n2} \right\} = V_0 \dots (42)$$
$$\sum_{n=1}^{2} \left\{ \left(a_{2n} + b_{2n} \frac{R_{21}}{Z_n} \right) A_{n1} + \left(a_{2n} - b_{2n} \frac{R_{21}}{Z_n} \right) A_{n2} \right\} = 0 \dots (43)$$

であり、同様に遠端では、線路m(=1,2)に対して、

$$\sum_{n=1}^{2} \left\{ \left(a_{mn} - b_{mn} \frac{R_{mn}}{Z_{n}} \right) e^{-j\omega\tau_{n}} A_{n1} + \left(a_{mn} + b_{mn} \frac{R_{mn}}{Z_{n}} \right) e^{j\omega\tau_{n}} A_{n2} \right\} = 0$$
(44)

の計 4 つの連立方程式が求められる. ここに、 τ_n は、 モードnの線路の遅延時間である.

式(42)~式(44)を解き,式(27),式(38)および式 (39)に代入して,近端と遠端の電圧を求め,フーリ エ逆変換することによって時間応答を求めることが 出来る.数学的な厳密さは別として, $j\omega = s$ とおけ ば, $V(\omega) \rightarrow V(s)$ となって,ラプラス逆変換を行っ て時間応答を求めることも出来る.

6.5. 差動クロストークの解析

差動クロストークの解析は、この2本線路を4 本線路に拡張する.

図 11 差動クロストーク

図11の回路図において,線路#1および線路#2が 差動の加害者線路対で,#3および#4が差動の被害者 線路対である.同図は,被害者線路と加害者線路と の信号の向きが同じの,いわゆる遠端クロストーク を表しているが,被害者線路の向きを逆にすれば近 端のクロストークになる.

加害者線路のドライバの電圧を、線路の番号nに 対応して、 V_{0n} とし、

 $V_{01} = +V_0$ (45)

 $V_{03} = V_{04} = 0 \tag{47}$

とする.

2本線路の式(28)および式(31)は、4本線路に対して、

となり,式(38)~式(41)は,伝搬モード*m*(=1~4)に 対して,

と表す. λ_m は,式(24)を 4 本線路に拡張した,LCの 4×4 行列の固有値であり,A及びBも,2本線路 と同様である.

以上により、2本線路と同様に、以下の連立方程 式により、8個の積分定数 A_{m1} , A_{m2} ($m = 1 \sim 4$)を求める.

まず, 伝搬モードm=1~4に対して, 近端は,

$$\sum_{n=1}^{4} \left\{ \left(a_{nm} + b_{nm} \frac{R_{n1}}{Z_m} \right) A_{m1} + \left(a_{nm} - b_{nm} \frac{R_{n1}}{Z_m} \right) A_{m2} \right\} = V_{0n}$$
(52)

であり, 遠端は,

$$\sum_{n=1}^{4} \left\{ \left(a_{nm} - b_{nm} \frac{R_{n1}}{Z_m} \right) e^{-j\omega\tau_m} A_{m1} + \left(a_{nm} + b_{nm} \frac{R_{n2}}{Z_m} \right) e^{j\omega\tau_m} A_{m2} \right\} = 0$$
(53)

近端と遠端の電圧は、2本線路と同様にして、8元 の連立方程式(52)、式(53)から積分定数 A_{m1}, A_{m2}を求 め、式(50)によって、各モードの電圧を求め、各線路 の近端および遠端の電圧を求める. すなわち、

である.式(45)~式(47)のように加害者線路に信号 を与え、フーリエ逆変換、実際には、iFFT によって、 表計算ソフトを用いて、時間応答を求めることが出 来る.

6.6. 解析結果

実際の線路定数に対して解析を行い,これまで あまり議論されてこなかった項目も含めて,特徴が 明らかになった.

クロストークに影響する項目は、チャネル間の クロストーク係数、表面層と中間層との違い、近端 および遠端の容量、および配線長である.

(1) クロストークのタイミングとパルス幅

差動伝送は、ほとんどがギガビット伝送に用い られるため、一般に、信号のパルス幅が、線路の往 復時間よりも短い.

したがって、図 12 に示すように、加害者の信号 の前縁によるクロストークと、後縁によるクロスト

ークとが、極性を変えて重畳されるため、合成され たクロストークは、加害者信号のパルス幅に等しく なる.さらに、線路の往復時間後に、最初のクロス トークとは逆の極性のクロストークが現れる.

クロストークの極性は,重要ではないが,図 11 における,隣接した,線路#2から線路#3への影響が 支配的であるため,近端,遠端ともに,加害者信号 とは逆極性になる.ただし,電圧源駆動(例えば PECL)の遠端クロストークのみが同極性である.

(2) チャネル間のクロストーク係数の影響

チャネル間のクロストーク係数とは、図 11 にお いて、線路#2 と線路#3 との間のクロストーク係数 ξ_{33} である.

近端クロストークは、表面層、中間層ともに、ほ ぼクロストーク係数に比例して、 $\xi_{23} = 0.2$ のときに、 クロストークは、0.08 程度である.一般信号の場合 には、近端クロストークは、ほぼ $\xi/2$ であるから、 これよりはやや小さい.

遠端クロストークは、少し複雑である.

表面層の遠端クロストークは、図 13 のように、

図 13 クロストーク係数と表面層の遠端クロストーク

クロストーク係数に対して,複雑な関係がある.図 14は,表面層の遠端クロストークの波形の一例であ り,クロストーク係数が大きい方が,クロストーク

はむしろ小さい. 中間層の遠端クロストークは、Hyperbola 終端の

図 15 中間層の遠端クロストーク

条件を満たしているので、クロストークの振幅自体 は小さいが、図 15 に示すように、ほぼ *ξ*₂₃の 2 乗に 比例する. なお、線長にはほとんど依存しない.

同図から、中間層のクロストークは、 $\xi_{23} = 0.3$ でも、せいぜい1%程度なので、ほとんどクロストークが問題になることはなさそうである.ただし、後述のように、近端および遠端の静電容量がクロストークを増大させることに注意する必要がある.

(3) 線長の影響

前に述べたように、4本線路には、それぞれの特 性インピーダンスと伝搬遅延を持つ4つの伝搬モー ドが存在する.

それぞれの線路の電圧・電流は、これらの伝搬モ ードの1次結合で表されるので、各モードの伝搬遅 延が異なると、各モードの1次結合により、ひげ状 のクロストークとなって現れる.

線長が長くなると、遅延時間の差が大きくなり、 クロストークも増大する.中間層では、全ての伝搬 モードの伝搬遅延は等しいが、表面層では、基本的

に全て異なる伝搬遅延を有する.このため,図16に 示すように、中間層のクロストークは線長に無関係 であるが、表面層は、線長に比例してクロストーク が増大する.

なお,近端は,表面層,中間層ともに,線路の往 復時間が,信号の立ち上がり時間より小さい場合を 除いて,線長には依存しない.

(4) 近端,遠端の容量の影響

最後に、これまであまり考慮されていなかった、 ドライバやレシーバの静電容量について述べる.

表2に,各伝搬モードの特性インピーダンと,式 (48)の係数の例を示す.

表2 各モードの特性インピーダンスと係数の例

	n m	モード1	モード2	モード3	モード4
	Line1	0.368	-0.283	0.648	-0.604
伝搬モート	Line2	0.604	0.648	0.283	0.368
a_{mn}	Line3	0.604	-0.648	-0.283	0.368
	Line4	0.368	0.283	-0.648	-0.604
特性インピーダンス Z _m (Ω)		63.7	36.7	51.7	44.6
遅延時間 tdm (ns/m)		7.23	7.23	7.23	7.23

$Z_0 = 50\Omega, Z_{diff} = 85\Omega, \xi_{23} = 0.2$ Strip Line GreenExpress V2による解析

近端,遠端の容量と特性インピーダンスによる 時定数によって、立ち上がり波形がなまる.そのな まり方は、特性インピーダンスが大きいモードほど 顕著である.そのため、各モード間で、遅れの差が 生じて、表2の各モードごとの振幅をかけて1次結 合される際に、「ヒゲ状」のノイズが生じる.した がって、容量の増加に伴って、遠端のクロストーク

図 17 近端・遠端の容量と遠端クロストーク

は増大することがある. 図 17 に, 近端と遠端に静電 容量を接続したときの容量に対するクロストークの 振幅を示す.容量と ξ₂₃ にほぼ比例していることが 分かる.

図 18 には、この容量の有無によるクロストーク の波形の違いを示す.

なお、表面層の場合は、各モードの遅延時間の違いが支配的なので、容量にはほとんど依存しない.

6.7. 差動クロストークのまとめ

以上の解析結果を,表3にまとめて示す.表面層 の遠端クロストークの ξ_{23} との関係や,中間層の遠 端クロストークの容量との関係は,これまであまり 認識されていなかったようである.なお,特に遠端

図 18 近端,遠端の容量によるクロストーク (加害者信号は任意目盛り)

表3 差動クロストークのまとめ

	近端		遠端		
層	表面層	中間層	表面層	中間層	
ξ_{23}	ち23 に比例		複雑	小さい _{ξ23} ² に比例	
線長	無関係		線長に比例	無関係	
容量	無関係		無関係	容量に比例	

のクロストークに関しては、線路損失も考慮する必要があるし、信号の立ち上がり時間にも影響を受けるので、実際の回路定数で十分な解析をする必要があると考える.

7. まとめ

信号の高速化に伴い,周波数に比例する誘電損と 周波数の平方根に比例する抵抗損が顕在化してき た.

これらの周波数依存の損失により、伝送波形は、 同じ論理が連続すると振幅がフルスケールに漸近し て大きくなり、その次に反対の論理に変わる際に応 答が追いつかない.この傾向は線長が長いほど顕著 である. この時間応答を, UI ごとに重ねたアイパターンは, 伝送路の評価の一手段として用いられる.

アイ開口を広げる手段として,エンコード,プリ エンファシス,イコライザなどの対策技術が実用化 されている.

差動信号のクロストークは、考え方や解析が煩雑 であるが、2本線路の基本的なクロストークの考え 方を、4本線路に拡張して、周波数応答として求める ことが出来、その結果を、フーリエ逆変換、実際に は iFFT により時間応答が得られる.

チャネル間のクロストーク係数 ξ₂₃ とクロストー クとの関係や、近端、遠端の容量の影響など、これ まであまり着目されていなかったパラメータの影響 が明らかになった.

文 献

- [1] 碓井有三:ボード設計者のための分布定数回路のすべて(改訂版) 自費出版
 (http://home.wondernet.ne.jp/~usuiy/), 2004
- [2] 枝 洋樹, 大石 基之:「GHz 動作のボード設計 「距離の壁」を克服へ,」 日経エレクトロニクス, no.798, pp.118-127, 2001
- [3] 碓井有三:ボード上の GHz 動作定量分析が最 適な処方箋 日経エレクトロニクス no.812, pp.107-113, 2002
- [4] 碓井有三:「高速システム設計における線路損失の考え方」デザインウェーブマガジン pp.48-55, 2003年9月号
- [5] 株式会社ウィンドワード:「表皮効果と誘電損失」 https://www.windward.co.jp/skinandloss.html
- [6] Clayton R.Paul : Analysis of Multiconductor Transmission Lines, 2E, Wiley-IEEE Press, 2007
- [7] Clayton R.Paul: Introduction to Electromagnetic Compatibility, Wiley (2006) (ポール, 櫻井ほか (訳), (2006) EMC 概論, ミマツデータシステム

著者紹介

碓井 有三

シグナルインテグリティ コンサルタント, usuiy jp 3539@nifty.com