ワイドバンドギャップ半導体デバイスの基礎 Basics of Wide Bandgap Semiconductor Devices

上田 大助

Daisuke Ueda

京都工芸繊維大学

Kyoto Institute of Technology

概要

GaN 系半導体デバイスは青色 LED [1]が産業的な成長を遂げるに従って、結晶成長やプロセス技術が蓄積され、電子デバイスへの展開が期待されるようになった。電子が走行する電極間距離を短くしても高電圧を支えられるワイドバンドギャップ半導体の物性的な特徴は電力デバイスとして多くの可能性を与える。特に高周波パワーアンプ[2]や電力変換システム[3]に用いると、変換効率の高いシステムを実現できることが期待される。パワーデバイスの開発の歴史は、トランジスタが発明された直後まで遡ることができる。SiC 半導体は超高耐圧化の Breakthrough を成し遂げたが、GaN デバイスはConsumer 用途への期待が高い。本基礎講座では GaN を用いるパワーデバイスについて材料物性からデバイス応用までの概略を紹介する。

図1 Panasonic における GaN 半導体デバイスの開発経緯

Abstract

The history of the development of the power device, can be traced back to just after the transistor was invented. Silicon power devices, which have many different device structures, has been put to practical use for a variety of applications. In recent years, there arises a movement of wide bandgap semiconductor to renovate power electronics, which can realize high voltage blocking capability with relatively thin epitaxial layers that eventually reduce the conduction loss. Although the first implementation of those the trial is using SiC material, gallium nitride (GaN) one also become a candidate of those power switching device owing to the material maturity by the rapid progress of blue LEDs. In this seminar, general background of GaN device starting from the material properties to the device applications of GaN-based ones.

1. GaN 材料

一般的に半導体デバイスの動作周波数を高めるに は、キャリアが飽和速度 v_{sat} で走行するとして、電極 間隔lを狭めることが必要になる。然しながら、電極 間隔を狭めれば、絶縁破壊電圧は低下する。このた め、耐 EV_B と遮断周波数 f_T の間に Johnson's limit と呼 ばれる trade-off の関係が生じる[4]。臨界電界強度を E_c とすれば、この関係は下記のようになる。

$$f_T = \frac{1}{2\pi\tau} = \frac{v_{sat}}{2\pi l}$$
(1)
$$V_B \cdot f_T = \frac{E_c \cdot v_{sat}}{2\pi}$$
(2)

Johnson's limit は耐圧と遮断周波数の trade-off となる指標で、Si 及び GaN 系材料では 300GHzV と 90,000GHzV となる。この差は特に PA への応用を考える場合に重要になる。即ち、GaN 材料は高周波デバイスへ適用した場合、これまでの化合物半導体デバイスをも凌ぐ特性を有する。これらの物性定数を 末尾の表1にまとめる。

図2 GaN系半導体の結晶面

GaN 系の結晶構造は一般的に六方晶系であり、デバ イス作成には図2に示されるような面方位のものが 使用される。また、GaN 系材料はNの電気陰性度が 大きいため、その内部に自発分極が存在する。図3は c面 GaN 結晶の分極方向が異なる GaN 結晶を示し たものである。

図3 GaN 結晶 c 面における非対称構造

ワイドバンドギャップ半導体の格子定数とバンド ギャップの関係を図1に示す。様々な混晶が存在す るが、格子定数が許容される範囲でヘテロ接合が実 現され、様々なデバイスが試作されている。

図4 GaN 系半導体の格子定数とバンドギャップ

このような自発分極に加えて、格子定数の差によっ て生じる結晶歪によってピエゾ分極が生じる。これ らの合成による分極は固定電荷であるが、それを中 和するために界面に移動可能なキャリアが生成され る。このように GaN 系のヘテロ接合を用いることで ドナーやアクせプタなどのドーパントの存在しない 状態でもヘテロ界面にキャリア生起できるのが GaN 系半導体の1つの重要な特徴になっている[5]。

図5は GaN 系半導体の混晶材料と GaN 基板との 界面に生起されるキャリア密度の関係を, AlGaN, InAlN, InGaN について計算したものである。

図5 分極によって生起されるキャリア密度

2. GaN 系 FET

一般的に Ga 面上に成長された AlGaN と GaN ヘテ ロ接合におけるバンド構造とキャリア分布は図6の ようになる。

図6 AlGaN/GaN ヘテロ構造と分極電荷

デバイス構造は従来の GaAs/AlGaAs HFET 構造と 同様のものである。ただし、現在母材料となる基板が 存在しないので、サファイヤ、SiC、Si 基板を用いて 開発が進められている。以下は Si (111)基板上に成長 された AlGaN/GaN パワーHFET の特性例である[2]。

図7 Si上の AlGaN/GaN HFET の断面 SEM

図8 電流コラプス抑制された AlGaN/GaN on Si HFET の電流・電圧特性

図9 試作した GaN/AlGaN HFET の入出力特性

Parameters	Symbol	Unit	Si	GaAs	AIN	InN	GaN	SiC	Diamond
crystal structure	-	-	diamond	zincblend	wurtzite	wurtzite	Hexagonal, cubic	Hexagonal, cubic	diamond
density	-	g/cm³	2.328	5.32	3.26	6.81	6.1	3.21	3.515
mole	-	g/mol	28.086	144.64	40.9882	128.83	83.73	40.097	12.011
atomic density	-	atom/៣	5.00E+22	4.42E+22	4.79E+22	3.18E+22	4.37E+22	4.80E+22	1.76E+23
lattice constant	-	Å	5.43095	5.6533	3.1114/a, 4.9792/c,	3.544/a, 5.718/c,	Hex 3.189/a, 5.185/c, Cubic 4.52	(6H)3.086/a, 15.117/c, (4H)3.073/a, 10.053/c, (3C)4.3596/a, 3.073/c	3.567
melting point	-	°C	1,415	1,238	2,200	1,100	2,573, @60kbar	2,830	4,373, @125kbar
specific heat	-	J(g ⋅ °C)	0.7	0.35	0.748	0.296	0.431	0.2	0.52
linear thermal expansion coefficient	-	°C ⁻¹	2.6E-06	6.9E-06	5.27E-6/a 4.15E-6/c	3.8E-6/a 2.9E-6/c	5.6E-6/a 3.2E-6/c	~ 5E-6	8.0E-07
thermal conductivity	-	W/(cm∙°C)	1.5	0.46	2.85		2.1	2.3~4.9	6 ~ 20
transition	-	-	indirect	direct	direct	direct	direct	indirect	indirect
bandgap energy	Eg	eV	1.12	1.42	6.2	0.65	3.39(H)	3.02/6H 3.26/4H 2.403/3C	5.46~5.6
energy separation	Г-L, Г-Х	eV	indirect	Г-L0.29, Г-X0.48	Г-ML 0.7 Г-К 1.0	Г-А >0.7 Г-Г>1.1 Г-К >2.7	Г-Г'1.9 Г-М 2.1	indirect	indirect
dielectric constant	εr	-	11.7	12.9 <i>,</i> 10.89@RF	8.5	15.3	12	10.0(6H) 9.7(4H)	5.7
electron-affinity	χ	eV	4.05	4.07	1.9	5.8	3.4	4	(NEA)
intrinsic carrier density	ni	cm ⁻³	1.45E+10	1.79E+06	9.40E-34	9.20E+02	1.67E-10	1.16E-8 (6H) 6.54E-7 (4H)	1.00E-26
effective density of states	Nc	cm⁻³	2.80E+19	4.70E+17	4.10E+18	1.30E+18	2.24E+18	4.55E+19 (6H) 1.35E+19 (4H) 1.53E+19 (3C)	1.00E+20
effective density of states	$N_{\rm V}$	cm ⁻³	1.04E+19	7.00E+18	2.84E+20	5.30E+19	1.16E+19	1.79E+19	1.00E+19
effective mass	m∗e	m∗el/m₀ m∗e t /m₀	0.9163/l, 0.1905/t	0.067	0.4	0.1-0.05	0.2	1.5/l. 0.25/t	1.4/l, 0.36/t
effective mass	m∗h	m∗lh/m₀ m∗hh/m₀	0.16/l, 0.49/h	0.082/l, 0.45/h	0.6	1.65	0.6/h	0.8	0.7/l, 2.1/h
mobility	μе	mi∕(∨∙s)	1,500	8,500	300	3,200	1,800	460 ~ 980	2,200
mobility	μh	ani∕(∨∙s)	450	400	14	220	~5	20	1,800
lattice matching	-	-	∼ SiGe	AlAs, InGaP	∼GaN	-	∼SiC, sapphire	∼GaN,AIN	-

3. まとめ

以上、GaN 系の電子デバイスについての概要を述 べた。ここではサファイヤや Si(111)基板などの異種 基板上に成長した Normally-on 型の GaN/AlGaN HFET の例を述べたが、Normally-off 化が可能な GIT 構造もパワーデバイスの1つの方向である。また、パ ワーデバイスは放熱性を考慮しなければならない。 このため SiC 基板上の結晶成長やダイヤモンド基板 上の実装技術も検討されている。最近では、比較的熱 伝導性の高いバルク GaN 基板を用いた縦型パワーデ バイスも研究されているが、MMIC へ適用する場合、 半絶縁性の基板の実現が期待される。 表1 各種半導体材料の物性値

参考文献

- [1] Shuji Nakamura, et al, CRC Press 2000
- [2] Satoshi Nakazawa, et al, SSDM, pp564-565, 2011
- [3] T. Morita, et al, APEC, IEEE, 2011
- [4] E.O. Johnson, RCA Review, pp.163-177, June 1965.
- [5] O. Ambacher, et al, J. Phys. Cond. Matt. 14, pp. 3399–3434, 2002

[6] Y. Uemoto, et al, IEDM Tech. Digests, pp. 907-910, 2006